CPU Performance: Legacy Tests

We have also included our legacy benchmarks, representing a stack of older code for popular benchmarks.

All of our benchmark results can also be found in our benchmark engine, Bench.

3DPM v1: Naïve Code Variant of 3DPM v2.1

The first legacy test in the suite is the first version of our 3DPM benchmark. This is the ultimate naïve version of the code, as if it was written by scientist with no knowledge of how computer hardware, compilers, or optimization works (which in fact, it was at the start). This represents a large body of scientific simulation out in the wild, where getting the answer is more important than it being fast (getting a result in 4 days is acceptable if it’s correct, rather than sending someone away for a year to learn to code and getting the result in 5 minutes).

In this version, the only real optimization was in the compiler flags (-O2, -fp:fast), compiling it in release mode, and enabling OpenMP in the main compute loops. The loops were not configured for function size, and one of the key slowdowns is false sharing in the cache. It also has long dependency chains based on the random number generation, which leads to relatively poor performance on specific compute microarchitectures.

 

3DPM v1 can be downloaded with our 3DPM v2 code here: 3DPMv2.1.rar (13.0 MB)

3DPM v1 Single ThreadedCinebench 11.5 Multi-Threaded

x264 HD 3.0: Older Transcode Test

This transcoding test is super old, and was used by Anand back in the day of Pentium 4 and Athlon II processors. Here a standardized 720p video is transcoded with a two-pass conversion, with the benchmark showing the frames-per-second of each pass. This benchmark is single-threaded, and between some micro-architectures we seem to actually hit an instructions-per-clock wall.

x264 HD 3.0 Pass 1x264 HD 3.0 Pass 2

CPU Performance: Encoding Tests Core i9-9900K in Small Form Factors
Comments Locked

101 Comments

View All Comments

  • duploxxx - Thursday, November 29, 2018 - link

    Interesting in a way that there are so many people that always believe in benchmarking and that in real world all cores are always idle....

    The world of wonders. Artificial TDP, turbo modes and decreased frequency when running multiple cores. All to fool consumers and benchmark believers.

    Very nice review. Now the question:
    can this also be tested on a Ryzen 2700 and a 8700K and a 9900. Put all 3 albeit in a different setup on a stock or even reduced cooling device and see how they behave....
  • olde94 - Thursday, November 29, 2018 - link

    I see why you are intested, but both 2700 and 8700k are actually quite close in power use to their rated TDP. The issue was that the 9900k wasn't at all. If you see the power/performance graph on the last page, i think you have your answer ;)
  • notashill - Thursday, November 29, 2018 - link

    It's almost a very nice graph but could really stand to have a few more CPUs labeled. I mean even the literal headlining CPU that the entire article is about isn't labeled.

    And trying to compare to the POV-Ray results earlier in the article either a bunch of the CPUs are missing or the scale on the chart does not actually match the labels.
  • duploxxx - Thursday, November 29, 2018 - link

    according anandtech measurements:

    2700x 105w rated buring 117.18
    8700k 95w rated buring 145.71
    9900k 95w rated burning 168.45

    so no i ma not kidding. even the 8700k will have reduced performance with real tdp limit vs glorious benchmarking with best of best mobo and cooling.
  • 4800z - Thursday, November 29, 2018 - link

    No the 9900k and 8700k would have no lower performance on games. This only comes up when maxing out all cores for things like cinibench.
  • TheinsanegamerN - Thursday, November 29, 2018 - link

    Unless a game pushed those TDPs up. Games that can use many cores at once, like CIV and battlefield. You know, two minor franchises nobody would notice.....
  • rhysiam - Friday, November 30, 2018 - link

    There's a big difference between starting to use 6-8 cores (like Civ & BF) and hitting all those cores with a heavy load for a sustained period. Show me a game benchmark that has the 9900K literally doubling the performance of a 7700K and then you'll have a game that can push the 9900K well past its 95W tdp.

    Game streaming from a single PC would certainly do that, but I'd hopefully streamers are doing some research and choosing hardware carefully.

    To be clear, I'm not defending Intel here, the tdp figure has become a joke, but we're a long way from this being a widespread issue for gaming workloads.
  • mr_fokyou - Thursday, November 29, 2018 - link

    not if you are streaming while gaming than you are very much bottlenecking 9900k if u force TDP limits
  • bananaforscale - Saturday, December 1, 2018 - link

    You are assuming no game uses all the cores (or enough that they go above TDP). The assumption is incorrect now and it will become more incorrect as quad core becomes the minimum.
  • Samus - Saturday, December 1, 2018 - link

    I think it's totally insane a CPU can use 25-27% more power than its advertised rating. Sure, that includes more performance, but as a system builder this has got to be a liability if you are putting together, say, a little 1U rack for video encoding security camera feeds. You would use a specified CPU based on its performance AND advertised TDP rating, only to find out to GET that performance, it needs to go well beyond its TDP rating, which likely wont be possible in a tiny rack with a 1U cooler (I don't believe they make 1U coolers rated beyond 105W - and those are incredibly rare, most are 73w-88w)

Log in

Don't have an account? Sign up now